
 Google Cloud AlloyDB for PostgreSQL
 Cross-Region Disaster Recovery
 Process
 Architecture Solution Document
 Christoph Bussler, January 2023

 Objectives
 The objective of this architecture solution is to demonstrate a complete cross-region disaster
 recovery protocol for AlloyDB for PostgreSQL .

 After a complete execution of the disaster recovery process the end state is the same as the
 initial state of a primary AlloyDB cluster in one region and a secondary AlloyDB cluster in a
 second region. This is therefore a full “round-trip disaster recovery” after the disaster causing a
 failover and fallback is resolved.

 Architecture and failover process overview
 This section introduces the different phases of a full round-trip disaster recovery. These phases
 are referred to later in the specific instructions in order to show how the different phases can be
 executed. All phases together define the complete disaster recovery process.

 For textual brevity “primary cluster” and “secondary cluster” are synonyms for “primary AlloyDB
 for PostgreSQL cluster” and “secondary AlloyDB for PostgreSQL cluster” in this document.

 Phases of failover and recovery
 There are three phases in the disaster recovery process. These are outlined next as an
 overview.

 ● Phase 1 : initial state
 ○ The primary cluster is in one region (region 1), and a secondary cluster is in a

 second region (region 2).
 ● Disaster in region that hosts primary cluster

 ○ A disaster takes place in the region of the primary cluster (region 1).
 ○ Note : if a disaster in the secondary cluster’s region occurs (region 2), another

 secondary cluster is established in an available third region. This case is not
 further outlined in this architecture solution as it is straightforward to implement.

https://cloud.google.com/alloydb

 ● Phase 2 : promoting the secondary cluster in region 2 to primary cluster and creating a
 new secondary cluster in region 3.

 ○ A new secondary cluster has to be created in region 3 after the original
 secondary cluster in region 2 was promoted to the new primary cluster.

 ● Phase 3 : fallback to initial state
 ○ This phase establishes a primary cluster again in region 1 and a secondary

 cluster in region 2.
 ○ This phase concludes the disaster recovery process.

 Each phase is presented in more detail in separate sections below, with corresponding gcloud
 commands for you to get familiar with or to execute. In case edge cases or different variants of a
 phase exist then these are explained as well.

 Secondary clusters
 In the following a few notes on secondary clusters and their properties.

 Replication duration
 When a secondary cluster is established, replication from the primary cluster starts. Replication
 is not instantaneous, so it is important to wait for the replication to be complete before further
 cluster operations are applied like promoting a secondary cluster to a primary cluster.

 Single secondary cluster restriction
 Only one secondary cluster can exist for a primary cluster. This is a restriction that during the
 disaster recovery might cause a primary cluster not having a secondary cluster associated with
 it for a period of time. A secondary cluster might have to be deleted before another one can be
 created.

 This happens when a primary cluster has a secondary cluster after failover, but needs another
 secondary cluster in a separate region in order to get back to the initial state. This is discussed
 in Phase 3 below in more detail.

 One way to protect a primary cluster is to ensure a recent backup is taken before work on the
 secondary clusters commences.

 Example disaster recovery process
 The following table shows an example of a complete disaster recovery process. Note that the
 names of the clusters are independent of their roles in the respective phase for clarity as the
 roles of a cluster might change. Implementing the role change by cluster naming convention is
 possible, but not advised, as it might result in naming confusion, especially when looking at
 logs.

 Cluster Role Region Region #

 Phase 1: initial state

 cluster-1 Primary us-west4 1

 cluster-2 Secondary us-central1 2

 Disaster in region of primary cluster (us-west4)

 cluster-1 <inaccessible> us-west4 1

 Phase 2: promoting secondary to primary and creating new secondary

 cluster-1 <deleted> us-west4 1

 cluster-2 Primary us-central1 2

 cluster-3 Secondary europe-west3 3

 Phase 3: fallback to initial state

 cluster-3 <deleted> europe-west3 3

 cluster-4 Secondary us-west4 1

 cluster-4 Primary us-west4 1

 cluster-5 Secondary us-central1 2

 cluster-2 <deleted> us-central1 2

 Disaster recovery process completed

 The available regions for AlloyDB can be found here: AlloyDB locations | AlloyDB for
 PostgreSQL | Google Cloud . Since this might change over time, additional regions might be
 available at some point in the future and gives you additional possibilities of primary cluster and
 secondary cluster placement.

 Note : this solution shows a cross-region disaster recovery approach. It does not discuss failover
 between instances within an AlloyDB cluster. For the latter see Fail over the primary instance
 manually | AlloyDB for PostgreSQL | Google Cloud .

 Alternative approach to disaster recovery process
 The philosophy followed in this solution is that there is a disaster recovery deployment with a
 primary cluster and a secondary cluster in every phase along the disaster recovery process,
 especially after failover.

https://cloud.google.com/alloydb/docs/locations
https://cloud.google.com/alloydb/docs/locations
https://cloud.google.com/alloydb/docs/instance-primary-failover
https://cloud.google.com/alloydb/docs/instance-primary-failover

 This is not the only possible approach, however. Some alternatives are discussed next.

 Temporary primary cluster without secondary cluster
 After a disaster takes place, you could decide to only have a primary cluster (and no secondary
 cluster) until the disaster has been resolved. This exposes you to the risk that the region
 becomes inaccessible during the disaster recovery process that hosts the (new) primary cluster.
 In this case you lose the primary cluster without the ability to failover again. While probably
 extremely unlikely that a second region becomes inaccessible, you have to decide if this
 approach is sufficient for your situation.

 Failover, but no fallback
 Another variant of the process is to failover, but not fallback. This means to execute phase 1
 and phase 2, but not phase 3. If the database clients can tolerate that the primary cluster is in
 different regions, a failover without a fallback might be a sufficient disaster recovery strategy.

 Prerequisites
 A few prerequisites are necessary before following the instructions in this solution.

 ● Configuring connectivity to AlloyDB as outlined here: Configure connectivity to AlloyDB .
 Please execute these instructions before continuing.

 ● Additional prerequisites are not further discussed in this solution, like having the
 necessary APIs enabled like the AlloyDB API itself (alloydb.googleapis.co m),
 compute.googleapis.com , and servicenetworking.googleapis.com . You can fulfill
 these requirements as they are presented to you.

 Phase 1: Setting up primary cluster and secondary
 cluster

 Figure 1: Primary cluster and secondary cluster

https://cloud.google.com/alloydb/docs/configure-connectivity

 This phase sets up a primary cluster and a secondary cluster in two different regions.

 For cost efficiency when executing this solution as a trial automatic backups are disabled. In a
 production environment, however, a proper backup strategy is advised based on the backup
 functionality AlloyDB provides.

 Note : the gcloud commands in the following are using the beta designation as the service is in
 beta currently. Once the service is coming out of beta, and the beta designation is dropped by
 Google Cloud, then drop it from the below commands as well.

 Setting up primary cluster
 The following two commands set up a primary cluster and a primary instance. The configuration
 is kept to a minimum for purposes of explanation. Please see About AlloyDB | AlloyDB for
 PostgreSQL | Google Cloud for additional configuration options that are more appropriately
 suited for your production deployment.

 gcloud beta alloydb clusters create cluster-1 --region=us-west4
 --password=postgres --disable-automated-backup

 gcloud beta alloydb instances create instance-1 --cluster=cluster-1
 --region=us-west4 --instance-type=PRIMARY --cpu-count=2

 Setting up secondary cluster
 The following two commands set up a secondary cluster for the primary cluster in a separate
 region and a secondary instance as well.

 gcloud beta alloydb clusters create-secondary cluster-2 --region=us-central1
 --primary-cluster=projects/alloydb-dr/locations/us-west4/clusters/cluster-1

 gcloud beta alloydb instances create-secondary instance-2 --cluster=cluster-2
 --region=us-central1

 Note : No cpu-count is specified for the secondary instance. AlloyDB ensures that this instance
 configuration corresponds to the primary instance.

 Console display
 The initial state looks as follows in the console:

https://cloud.google.com/alloydb/docs/overview
https://cloud.google.com/alloydb/docs/overview

 Disaster takes place
 A disaster does not necessarily mean a crash and burn of all zones in a region because of
 severe weather or other reasons. A region might not be accessible because of network
 problems. Another reason might be an electrical fault. Another reason might be a cloud service
 outage. There are many reasons why a region might not be able to support the execution of an
 AlloyDB cluster.

 In principle terms, a disaster means that the primary cluster is not accessible for a period of time
 that is considered inacceptable by applications that access the primary cluster as they would be
 inoperational for that period of time.

 For purposes of this solution, the region of the primary cluster (us-west4 in the example) is
 considered inaccessible and that constitutes a disaster. The organization decides to failover the
 primary cluster to the secondary cluster in order to reestablish the database service.

 Simulating a disaster would be possible by stopping or deleting the primary cluster and
 promoting the secondary cluster. In the context of AlloyDB, however, it is not possible to delete
 the primary cluster without having deleted the secondary cluster first - and this would defeat the
 purpose. It is also not possible to stop an AlloyDB cluster preventing it from serving clients.

 Therefore, we are left with promoting the secondary cluster and afterwards deleting the primary
 cluster. Later on, especially for implementing a switchover (voluntary failover and fallback), the
 section “Application design considerations” below outlines a recommendation to implement a
 database access path that supports quiescing database clients.

 Phase 2: Promoting secondary cluster to primary
 cluster and creating new secondary cluster

 Figure 2 : Secondary cluster promoted to primary cluster and new secondary cluster

 Since region 1 (in the example us-west4) is unavailable due to a disaster, a new primary cluster
 has to be established with a corresponding secondary cluster .

 Promote secondary cluster to new primary cluster
 The following command promotes the secondary cluster to become the new primary cluster.

 gcloud beta alloydb clusters promote cluster-2 --region=us-central1

 Establishing new secondary cluster
 There are two main cases depending on how quickly the disaster in region 1 is resolved (in the
 example we follow case 1 below).

 Case 1: Region 1 inaccessible for a prolonged period of time
 Create a new secondary cluster in a 3rd region to shorten the period of vulnerability of having
 only a primary cluster to the extent possible. We chose europe-west3 as there is no third region
 available in the US currently.

 gcloud beta alloydb clusters create-secondary cluster-3 --region=europe-west3
 --primary-cluster=projects/alloydb-dr/locations/us-central1/clusters/cluster-2

 gcloud beta alloydb instances create-secondary instance-3 --cluster=cluster-3
 --region=europe-west3

 Delete the original primary cluster (to mimic the disaster).

 gcloud beta alloydb clusters delete cluster-1 --region=us-west4 --force

 Since this command forces the deletion of the instances (and all stored data) the command
 provides a prompt for you to confirm that you want to execute it.

 Case 2: Region 1 recovered from disaster quickly
 It might be that the disaster was short-lived and resolved while the secondary cluster in region 2
 was promoted to the new primary cluster.

 There are several cases to be considered:

 ● New primary cluster in region 2 was not yet put into production: since in this case
 the new primary cluster did not receive any modifying queries, production can continue
 on the original primary cluster in region 1 if it is available again. In this case delete the
 new primary cluster in region 2 and create a secondary cluster again in region 2 for the
 original primary cluster in region 1.

 ● New primary cluster in region 2 was already put into production : since in this case
 the new primary cluster received modifying queries, create a new secondary cluster in
 region 1 and delete the original primary cluster in region 1 after making it inaccessible to
 clients.

 Managing the original primary cluster
 A disaster does not necessarily automatically destroy the original primary cluster in region 1.

 Special care has to be taken to manage the original primary cluster to avoid a split brain
 situation (where both the original and the new primary cluster receive client traffic concurrently).
 This could happen if region 1 becomes accessible again, and if one or more database clients
 continue accessing the original primary cluster, and not the new primary cluster that was
 created because of the disaster.

 In the above example the original primary cluster is deleted. However, there is a timeframe
 between the new primary cluster being available and the original primary cluster being deleted
 that allows a client to access the original primary cluster. Deletion of the original primary cluster
 does not solve the split brain problem.

 In a production environment an additional abstraction layer has to be implemented to remove
 the ability to access the original and the new primary cluster. This abstraction is a layer that is
 aware of the various clusters and which of the clusters is the only actual primary cluster at any
 given point in time. Any client must access the cluster using the abstraction layer and the
 abstraction layer makes sure that the correct primary cluster is accessed.

 Console display
 After phase 2 is complete the following clusters are up and running, one primary cluster, and
 one secondary cluster, in two regions that are different from the region of the original primary
 cluster.

 Phase 3: Fallback to initial state

 Figure 3 : Initial state reached after failover and fallback

 Once the failover is completed (phase 2), a stable state is reached with a primary cluster and a
 secondary cluster.

 Phase 2 can result into one of three scenarios

 ● Scenario 1 : new primary cluster in region 2, new secondary cluster in region 3
 ○ This scenario can exist because region 1 has a prolonged disaster and a

 complete primary cluster and secondary cluster is set up during failover.
 ○ Phase 3 must now establish a new primary cluster in region 1 and a new

 secondary cluster in region 2 to be back at the initial state.
 ● Scenario 2 : new primary cluster in region 2, new secondary cluster in region 1

 ○ This scenario can exist because the new primary cluster in region 2 was put into
 production, but region 1 was available fast enough to establish the secondary
 cluster in region 1.

 ○ Phase 3 must now promote the secondary cluster in region 1 and create a new
 secondary cluster in region 2 to be back at the initial state.

 ● Scenario 3 : new primary cluster in region 1, new secondary cluster in region 2

 ○ This is already the initial state and it came about because the disaster was so
 short-lived that the original primary cluster was kept as primary cluster and a new
 secondary cluster was created in region 2.

 ○ In phase 3 nothing else has to be done for this scenario.

 Scenario 1: no secondary cluster in region 1
 This scenario establishes a new primary cluster in region 1, and a new secondary cluster in
 region 2, starting from an existing primary cluster in region 2 and a secondary cluster in region
 3.

 Note : it is impossible to create more than one secondary cluster for a primary cluster. This
 means the following for the example: the existing secondary cluster in europe-west3 has to be
 deleted first before a new secondary cluster can be created in us-west4 (that will eventually be
 promoted to the new primary cluster).

 The following are the necessary steps:

 ● Delete original secondary cluster in region 3
 ○ gcloud beta alloydb clusters delete cluster-3 --region=europe-west3

 --force

 ● Create new secondary cluster in region 1 for primary cluster in region 2
 ○ gcloud beta alloydb clusters create-secondary cluster-4

 --region=us-west4
 --primary-cluster=projects/alloydb-dr/locations/us-central1/clusters
 /cluster-2

 ○ gcloud beta alloydb instances create-secondary instance-4
 --cluster=cluster-4 --region=us-west4

 ● Promote secondary cluster in region 1 to new primary cluster
 ○ gcloud beta alloydb clusters promote cluster-4 --region=us-west4

 ● Create new secondary cluster in region 2
 ○ gcloud beta alloydb clusters create-secondary cluster-5

 --region=us-central1
 --primary-cluster=projects/alloydb-dr/locations/us-west4/clusters/cl
 uster-4

 ○ gcloud beta alloydb instances create-secondary instance-5
 --cluster=cluster-5 --region=us-central1

 At this point the initial state is reached and the superfluous clusters can be deleted:

 ● Delete original primary cluster in region 2

 ○ gcloud beta alloydb clusters delete cluster-2 --region=us-central1
 --force

 Scenario 2: secondary cluster already in region 1
 This scenario requires less steps compared to scenario 1 since the new secondary cluster is
 already in region 1 and the new primary in region 2 (as established by phase 2).

 ● Promote secondary cluster in region 1 to be the new primary cluster
 ● Create new secondary cluster in region 2 for the new primary cluster in region 1

 This establishes the initial state again.

 ● Delete former secondary cluster in region 1 as it is not needed anymore

 Cleanup superfluous clusters
 When falling back several new clusters will be created and replication between primary cluster
 and secondary cluster will take time to complete. Only after replication from the primary cluster
 to the secondary cluster is completed the fully recoverable state is achieved.

 While new clusters are created and replication started, it is possible to at the same time delete
 any superfluous clusters that are not needed anymore as soon as possible. However, from a
 process execution certainty point of view, it might be more productive to establish a production
 setup first, before dealing with clusters that are not needed anymore.

 Console display
 The following shows the state after phase 3 when the system reached the initial state again.

 Regular testing with switchover and fallback
 It is highly recommended to test the discovery process regularly by voluntarily executing it by
 intentional switchover and fallback.

 A switchover and fallback does not only test AlloyDB’s functionality, but also reinforces the
 organization’s knowledge and process readiness of the disaster recovery process. Regular
 execution of switchover ensures that everybody who plays a role in the disaster recovery
 process is aware of its tasks and dependencies.

 Over time it is expected that AlloyDB will be available in additional regions. Since region
 selection is an important aspect of disaster recovery, a regular switchover might include a
 review of currently available regions. If additional regions are available an update of the
 recovery process can be performed at this time to place clusters in regions that were not
 available before.

 If special application design considerations were implemented (some possibilities are outlined
 below) then these are tested in a switchover and fallback as well assuring the correct interplay
 between the clusters and the accessing application systems.

 Application design considerations
 Ideally the disaster recovery process can be executed independently of any application logic
 and without the application systems accessing the clusters even being aware of a disaster
 recovery process (aside from possibly a short database cluster unavailability).

 However, this ideal situation is not always possible to achieve. Discussed next are a few use
 cases that applications have to be aware of and might require additional abstractions to be
 implemented.

 Preventing client access to a database cluster
 It is important to be able to prevent client access to a database cluster so that it is impossible for
 clients to gain read or modify database access.

 For example, if a primary cluster becomes unavailable and the disaster recovery process starts,
 a secondary cluster is promoted to be the new primary cluster. When the unavailable region
 becomes available again, the original primary cluster will usually become available again as
 well.

 In order to ensure that the original primary cluster is not being accessed, an abstraction layer
 intercepting database client access can ensure that a former primary cluster will never be
 accessed after a failure recovery (also discussed as avoiding the split brain problem). This

 abstraction layer must be aware of the different phases of the failover and fallback process in
 order to ensure that only one primary cluster can be accessed at any point in time.

 For the switchover process such an abstraction layer is important as well since the switchover is
 voluntarily started and a disaster has to be simulated. The best way is to stop clients from
 accessing the primary cluster - and that also simulates a disaster in the switchover use case.

 Database access latency tolerance
 In a disaster recovery or switchover process the location of the primary cluster changes to a
 different region. Applications themselves are executing their logic in specific regions.

 In case of a disaster recovery or switchover, the distance (network latency) between the
 application regions and the primary cluster region might change (increase or reduce, both is
 possible). Applications must be able to tolerate changes in latency in these cases and have to
 be designed for it.

 Optional fallback after failover
 While this solution provided a full round trip in disaster recovery so that after the disaster
 resolution the primary cluster is in the original region, it does not mean that it is the only possible
 approach.

 It is perfectly acceptable to failover, but not to fallback. This means that if after a disaster a new
 primary cluster and secondary cluster is established and this is the production deployment going
 forward. This requires, however, that the applications are prepared for the case that the region
 of the primary cluster changes.

 Cluster naming abstraction
 As proposed in this document, the name of the clusters are independent of their role and
 location (region). The reason is to avoid confusion when a cluster with a name containing a role
 name is not in the role the cluster name suggests. As you can observe, there are several
 clusters being created (or promoted), and those have different names.

 From an application design perspective the particular cluster names should be abstracted so
 that the application configuration remains stable despite cluster name changes.

 Conclusion
 This solution architecture document outlined a full round-trip disaster recovery process that
 ensures that after a disaster in a region is resolved the original state of a primary cluster and

 secondary cluster are re-established. While this is one possible approach, alternatives are
 discussed as well, like failing over, but not falling back to the original state.

 The solution also discusses a few application design considerations as well as the need for
 regular testing of the disaster recovery process by means of voluntary switchover.

 Since the overall process is complex, and the duration directly proportional to the data volume
 stored, I recommend to start implementing and testing the process regularly to avoid losing data
 in a disaster situation.

